This analysis examines the internal consistency of invoking gravitational field energy in conjunction with the equality of inertial and gravitational mass, mi = mg The argument is not a rejection of General Relativity or Newtonian gravity per se, but a critique of selective or hybrid usage of gravitational field energy in energy bookkeeping.
The central question is whether gravitational field energy can be simultaneously treated as independent of the mass equivalence relation while being invoked as an essential component to preserve energy conservation.
The equality mi = mg is a statement about the intrinsic properties of matter:
This equality does not, by itself, include any contribution from gravitational field energy. It is strictly a relation between two attributes of matter, not a global energy accounting rule.
In Newtonian or GR-inspired treatments, gravitational field energy is sometimes introduced via a quasi-Newtonian energy density:
This quantity serves as a bookkeeping tool for total energy conservation in idealized, non-radiating systems. Importantly:
If gravitational field energy is treated as an entity independent of the relation mi = mg, then it must be handled consistently.
Logical consistency requires one of the following:
A conceptual inconsistency arises when gravitational field energy is:
Such opportunistic usage lacks physical justification and leads to ambiguous interpretation of conservation laws. This critique targets hybrid arguments, not fully consistent frameworks.
Extended Classical Mechanics resolves this ambiguity by explicitly accounting for all gravitationally relevant energy within effective mass-energy terms:
In ECM:
No independent gravitational field energy entity is required, eliminating the need for hybrid bookkeeping.
The argument presented is scientifically consistent, logically rigorous, and framework-aware. It does not conflict with established physics when properly scoped, but exposes the inconsistency of selectively invoking gravitational field energy to support the mass equivalence principle.
Until the derivation of −Mapp (NAM) is explicitly shown to be mathematically or physically inconsistent, its rejection remains interpretational rather than scientific.
An independent analytical review of the arguments presented here has been conducted in relation to the research framework articulated in “On the Logical and Physical Consistency of Gravitational Field Energy with the Relation mi = mg” (Thakur, 2026).
This external assessment specifically examined the internal coherence of the critique concerning gravitational field energy, mass equivalence, and scale dependence, without presupposing the Extended Classical Mechanics (ECM) framework as axiomatic.
The analysis identifies a fundamental inconsistency in standard treatments arising from what it terms hybrid accounting: gravitational field energy is invoked to preserve global energy conservation while being excluded from the definition of inertial and gravitational mass.
The assessment confirms that scale-independence is not preserved when gravitational field energy is treated as a non-local bookkeeping device at large scales but ignored at laboratory or particle scales. Such selective usage lacks a consistent physical basis.
The use of mechanism-dependent energy manifestation—illustrated by the piezoelectric effect and photon energy transfer—is found to be conceptually aligned with ECM’s treatment of vacuum-phase or manifestation energy. Energy conservation is thus understood as redistribution, not as the conversion of an external field entity into matter or motion.
The argument advanced in this document is found to be scientifically consistent, logically rigorous, and framework-aware. It exposes the inconsistency of selectively invoking gravitational field energy to support the relation mi = mg, without assigning that energy a coherent physical status.
Accordingly, the critique of hybrid gravitational energy accounting stands independently of interpretational preferences. The ECM framework is shown to provide a consistent resolution by internalizing all gravitationally relevant energy within effective mass terms, without requiring an independent gravitational field energy entity.